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EFFECT OF TRANSVERSE SHEAR AND ROTATORY
INERTIA ON THE FORCED MOTION OF

A STEPPED RECTANGULAR BEAM
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Forced motion of a rectangular beam whose thickness, density and elastic properties
along the length vary in any number of steps is analyzed by the eigenfunction method using
shear theory. A beam of two steps, clamped at both the edges and subjected to constant
or half-sine pulse load is considered as an example problem. Numerical results computed
for transverse defection are compared with those of classical theory.
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1. INTRODUCTION

The free vibration of stepped beams has been analyzed by many researchers [1–13]. Filipich
et al. [14] have considered the transverse vibration of a stepped beam subjected to an axial
force and embedded in a non-homogeneous Winkler foundation. Bepat and Bhutani [15]
have analyzed the free and forced vibration of stepped systems governed by a one
dimension wave equation with non-classical boundary conditions. The authors are not
aware of any paper on forced motion of beams of stepped thickness except that of the
present authors [16].

In the present paper, the effect of transverse shear and rotatory inertia on the forced
motion of a rectangular beam whose thickness, density and elastic properties along the
length vary in any number of steps, is analyzed. The beam is assumed to be made up of
n beam elements joined edge to edge and having in general different constant thickness,
densities and elastic properties. Their free vibrations are considered using shear theory. The
forced motion is analyzed by the eigenfunction method [17]. A beam made up of three
beam elements, clamped at both edges and subjected to constant or half pulse load is
considered as an example problem. The variations in lengths, thicknesses and densities of
the elements are taken in such a way that the total length, average thickness and average
density of the beam remain constant. Numerical results computed for the transverse
deflection for various parameters of the beam are compared with those of classical theory.

2. EQUATION OF MOTION

An isotropic beam of breadth b and length a whose thickness, density and elastic
properties along the length vary in steps is considered. The beam is defined by Cartesian
co-ordinates by setting the x-axis along the length, the y-axis along the breadth, the middle
plane of the beam in the plane z=0 and the two edges in the planes x=0 and x= a.
The beam is assumed to be made up of n beam elements joined edge to edge with their
middle planes lying in plane z=0. The breadth, length, thickness, density, Young’s
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modulus and Poisson’s ratio of the kth element (k=1, 2, . . . , n) are taken as b, ak , hk ,
rk , Ek and nk respectively and it lies from x= xk−1 to x= xk where xk − xk−1 = ak , x0 =0
and xn = a. Some of the thickness profiles of the beam along the length are shown in
Figure 1.

The equations of motion of the beam elements according to shear theory are taken as

[Ek h3
k /12(1− n2

k )]ck ,xx −[Ks Ek hk /2(1+ nk )] (ck +wk ,x )− rk h3
k ck ,tt =0,

Ks Ek hk /2(1+ nk ) (ck ,x +wk,xx )− rk hk wk ,tt + pk (x, t)=0,

xk−1 E xE xk , k=1, 2, . . . , n (1)

where wk , ck , pk , t and Ks are the transverse deflections, rotations of the normal to the
middle plane of the beam, loads per unit length, time and shear constant, respectively. A
comma followed by a variable suffix denotes differentiation with respect to that variable.

Making the equations (1) non-dimensional,

Ik ck ,XX −Lk (ck +Wk ,X )− (gk H3
k /12)ck ,TT =0,

Lk (ck ,X +Wk ,XX )+ gk Hk Wk ,TT +Pk (X, T)=0, Xk−1 EXEXk , (2)

where

X= x/a, Xk = xk /a, Hk = hk /a, gk = rk /ra , ok =Ek /E, Pk = pk /E,

T= tzE/(ra a2), Ik = ok H3
k /12(1− n2

k ), Lk =Ks ok Hk /2(1+ nk ), X0 =0,

Xn =1.

ra is the average density of the beam and E is the Young’s modulus of some standard
material.

3. FREE VIBRATION ANALYSIS

3.1. 

For free vibration one takes

Wk (X, T)=Wkj (X) eiVj T, ck (X, T)=ckj (X) eiVj T (3)

Figure 1. Thickness profiles of the beam.
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and by substituting in equations (2) after putting Pk =0 one gets,

Ik ckj ,XX −Lk (ckj +Wkj ,X )− (gk H3
k/12)V2

j ckj =0,

Lk (cjk ,X +Wkj ,XX )+ gk Hk Wkj V
2
j =0, (4)

where Wkj , ckj are the mode shape functions and Vj is the circular frequency for the jth
normal mode of free vibration.

For the sake of convenience, by suppressing the subscript j in the free vibration analysis
and putting (Wk , ck )= (W�k , c�k ) elk X in equations (4) and then eliminating W�k and c�k from
them, one gets

12Lk Ik l4
k + gk Hk (Lk H2

k +12Ik )V2l2
k + gk Hk (gk H3

k V2 −12Lk )V2 =0. (5)

If l2
1k and −l2

2k are the roots of equation (5), then the solution of the equations (4) can
be taken as

Wk (X)=Gk (X)Dk , ck (X)=Sk (X)Dk , (6)

where

Dk =[d1k d2k d3k d4k ]', Gk (X)= [cosh l1k X sinh l1k X cos l2k X sin l2k X],

Sk (X)= [C1k sinh l1k X C1k cosh l1k X C2k sin l2k X −C2k cos l2k X],

C1k =−[Lk l2
1k + gk Hk V2]/Lk l1k , C2k =[Lk l2

2k − gk Hk V2]/Lk l2k .

Dk is the vector of mode shape constants and the prime denotes the transpose of a
matrix.

The continuity conditions between the line elements at X=Xk ; k=1, 2, . . . , n−1 can
be taken as

Wl (Xk )=Wk (Xk ), cl (Xk )=ck (Xk ), Il cl,X (Xk )= Ik ck ,X (Xk ),

Ll {Wl,X (Xk )+cl (Xk )}=Lk {Wk ,X (Xk )+ck (Xk )}, (7)

where l= k+1.
From equations (6) and (7) one gets

Dl =A(l)Dk , A(l) =A−1
l (Xk )Ak (Xk ), (8)

where the matrices Ak (Xk ) and Al (Xk ) are given by

Ak (Xk )= [Gk (Xk ) Sk (Xk ) Ik Sk (Xk ) Lk {Gk,X (Xk )+Sk (Xk )}]',

Al (Xk )= [Gl (Xk ) Sl (Xk ) Il Sl (Xk ) Ll {Gl,X (Xk )+Sl (Xk )}]'. (9)

From equation (8), one gets

Dl =B(l)D1, B(l) =A(l)A(l−1) · · · A(2) = [b(l)
qr ]4×4 . (10)

In this way the 4n constants arising in solutions (6) reduce to 4. It can be seen that if
the thicknesses, densities and elastic properties of the n beam elements are taken as the
same, the matrices A(l) and B(l) reduce to unit matrices and the whole problem reduces to
that of a uniform beam.

3.2.  

The beam is taken to be clamped at both edges, for which the conditions are

W1 (0)=c1 (0)=Wn (1)=cn (1)=0. (11)
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3.3.  

Using relations (10) in solutions (6) and then putting them in conditions (11), we get

d11 + d31 =0, C11 d21 −C21 d41 =0,

s11 d11 + s12 d21 + s13 d31 + s14 d41 =0, s21 d11 + s22 d21 + s23 d31 + s24 d41 =0, (12)

where

s1r =Gn (1) [b(n)
qr ]4×1, s2r =Sn (1) [b(n)

qr ]4×1, r=1, 2, 3, 4. (13)

For a non-trivial solution of equations (12) the determinant of the coefficient matrix
must vanish, which gives rise to the following transcendental frequency equation

(C11 s24 +C21 s22) (s13 − s11)+ (C11 s14 +C21 s21) (s21 − s23)=0. (14)

The denumerable infinity of roots of this equation for given dimensions, densities and
elastic constants of the beam elements are frequencies Vj of various normal modes of free
vibration of the beam.

3.4.  

The orthogonality condition for normal modes of free vibration of the beam can be
obtained as

s gk Hk g
xk

xk−1

[12Wki Wkj +H2
k cki ckj ] dX=12dij , (15)

where dij is the Kronocker delta and summation over k is taken from 1 to n.

3.5.  

Since out of the four equations (12) only three are independent, one solves first three
of them to get D1 in terms of d41. This is substituted in equations (10) to get D2 and D3

in terms of d41. These are then substituted in solutions (6) to get the mode shapes as

Wk (X)=Gk (X) [e1k e2k e3k e4k ]'d41, ck (X)=Sk (X) [e1k e2k e3k e4k ]'d41,

Xk−1 EXEXk , k=1, 2, . . . , n. (16)

where

d=(C21 s12 +C11 s14)/C11 (s11 − s13), e11 =−d, e21 =C21 /C11, e31 = d,

e41 =1, eql = d(b(l)
q3 − b(l)

q1 )+ (C11 b(l)
q4 +C21 b(l)

q2 )/C11, q=1, 2, 3, 4. (17)

To get d41, normalization condition (15) is used to give

d2
41 =1/s [Fk (Xk )−Fk (Xk−1)], (18)

where

Fk (X)= gk Hk [ f1k X+ f2k sinh (2l1k X)+ f3k sin (2l2k X)

+f4k cosh (2l1k X)+ f5k cos (2l2k X)+ sk [cosh (l1k X){ f6k sin (l2k X)

+f7k cos (l2k X)+ sinh (l1k X){ f8k sin (l2k X)+ f9k cos (l2k X)}]], (19)

sk =2/(l2
1k + l2

2k ), 2l1k f1k = h1k (e2
1k − e2

2k )+ h2k (e2
3k + e2

4k ),



   815

4l1k f2k = h3k (e2
1k + e2

2k ), 4l2k f3k = h4k (e2
3k − e2

4k ), 2l1k f4k = h3k e1k e2k ,

2l2k f5k =−h4k e3k e4k , f6k =12g1k + h5k g2k , f7k =12g3k − h5k g4k ,

f8k =12g4k + h5k g3k , f9k =12g2k − h5k g1k , g1k = l1k e2k e4k + l2k e1k e3k ,

g2k = l1k e1k e3k − l2k e2k e4k , g3k = l1k e2k e3k − l2k e1k e4k ,

g4k = l1k e1k e4k + l2k e2k e3k , h1k =(12−H2
k C2

1k ), h2k =(12+H2
k C2

2k ),

h3k =(12+H2
k C2

1k ), h4k =(12−H2
k C2

2k ), h5k =C1k C2k H2
k . (20)

4. FORCED MOTION ANALYSIS

A solution of the forced motion equations (2) subjected to the continuity conditions (7)
and edge conditions (11) is assumed to be

Wk (X, T)= s Wkj (X)gj (T), ck (X, T)= s ckj (X)gj (T),

Xk−1 EXEXk , k=1, 2, . . . , n, (21)

where the summation over j is from 1 to a. By substituting it in equations (2) and using
equations (4), one gets

s gk Hk Wkj (gj ,TT +V2
j gj )=Pk (X, T), s (gk H3

k /12)ckj (gj ,TT +V2
j gj )=0. (22)

Using equations (22) and the orthonormality condition, one gets

gj ,TT +V2
j gj =Gj (T), (23)

where

Gj (T)= s g
xk

xk−1

Pk Wkj dX. (24)

The solution of equation (23) is

Vj gj (T)=Vj gj (0) cos (Vj T)+ gj ,T (0) sin (Vj T)+g
T

0

Gj (t) sin {Vj (T− t)} dt, (25)

where

gj (0)= s gk Hk g
xk

xk−1

Wk (X, 0)Wkj dX, gj ,T (0)= s gk Hk g
xk

xk−1

Wk ,T (X, 0)Wkj dX. (26)

If the initial conditions are taken as

Wk (X, 0)=Wk ,T (X, 0)=0,

then

gj (0)= gj ,T (0)=0. (27)
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4.1.  

The following two types of external loads uniformly distributed over a portion of each
beam element are taken:

4.1.1. Constant load (CL)

Pk (X, T)=P0 [U(X− jk )−U(X− hk )]U(T)/s (hk − jk );

Xk−1 E jk Q hk EXk , k=1, 2, . . . , n. (28)

where P0 is the total load on the beam.
Gj (T), evaluated after substituting from equations (16) and (28) in equation (24), is

substituted in equation (25) and the condition (27) is used, to get

gj (T)=Pj [1−cos (Vj T)]/V2
j , (29)

Figure 2. W0 versus T for CL for various values of b2 and a2; ——, shear theory; ------, classical theory; (a)
a2 =1·3, d2 = o2 =1·0; w, b2 =0·4; P, b2 =1·6. (b) a2 =0·7; d2 = o2 =1·0; w, b2 =0·4; P, b2 =1·6. (c) b2 =1·3,
d2 = o2 =1·0; w, a2 =0·4; P, a2 =1·6. (d) b2 =0·7, d2 = o2 =1·0; w, a2 =0·4; a2 =1·6.
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where

Pj =P0 s [fkj (hk )−fkj (jk )]/s (hk − jk ),

fkj (X)= d41j [{e1kj sinh (l1kj X)+ e2kj cosh (l1kj X)}/l1kj

+{e3kj sin (l2kj X)− e4kj cos (l2kj X)}/l2kj ]. (30)

4.1.2. Half sine pulse load (HL)

Pk (X, T)=P0 [U(X− jk )−U(X− hk )]{1−U(T− t1)} sin (pT/t1)/s (hk − jk );

Xk−1 E jk Q hk EXk , k=1, 2, . . . , n. (31)

where t1 is the duration of HL.

Figure 3. W0 versus T for CL for various values of d2 and o2. Key as Figure 2 except (a), (b) w, d2 =0·4;
P, d2 =1·6. (c), (d) w, o2 =0·4; P, o2 =1·6.
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Figure 4. W0 versus T for HL for various values of b2 and a2. Key as Figure 2.

By proceeding as above, one gets

gj (T)=6Pj t1 [p sin (Vj T)−Vj t1 sin (pT/t1)]/[Vj (p2 −V2
j t2

1 )], when TQ t1

2Pj pt1 [sin {Vj (T− t1 /2)} cos (Vj t1 /2)]/[Vj (p2 −V2
j t2

1 )], when Te t17.

(32)

The substitution of unique mode shapes Wkj given by equations (16) and (18) and gj (T)
from equation (29) or (32) as the case may be, gives the transverse deflection Wk (X, T)
for forced motion.

5. RESULTS AND DISCUSSION

The variations in lengths, thicknesses and densities of different beam elements are taken
in such a way that the total length, average thickness and average density of the beam
remain constant, thus

ak = ak /a1, bk = hk /h1, dk = rk /r1. (34)

Now Sak = a or a1 Sak = a or X1 =1/Sak and Xk =X1 ak
i=1 ai ; Sak hk = aha or

a1 h1 Sak bk = aha or H1 =Ha /(X1Sak bk ) and Hk =H1 bk , where ha is the average thickness
of the beam and Ha = ha /a; Sak hk rk = aha ra or g1 =Ha /(X1 H1 Sak Hk dk ) and gk = g1 dk .
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Figure 5. W0 versus T for HL for various values of d2 and o2. Key as Figure 3.

Numerical results are computed for the transverse deflection parameter W0

= (Wk /P0)x=0·5 for a beam made up of three beam elements whose first and third elements
are identical i.e., for a3 = b3 = d3 = o3 =1, by taking n1 = n2 = n3 =0·3 and Ha =0·1.

The frequencies Vj are computed by the bisection method up to an accuracy of five
decimal places and the series of Wk (equation (21)) is summed to the first ten terms which
gives an accuracy of four decimal places.

The graphs of W0 versus T for CL and HL for various values of b2, a2, d2 and o2 are
plotted in Figures 2–5 for shear theory as well as for classical theory. It can be seen in
all cases, that the magnitude of W0 at the first peak and the time of attaining the first peak
is higher in shear theory.
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